Após calcularmos corretamente a integral indefinida $\int \frac{x}{\sqrt{4x+1}} dx$, obteremos:
a) Nenhuma das alternativas
b) $\frac{(4x+1)^{5/2}}{3}-\sqrt{4x+1}+c$
c) $\frac{1}{2}\left(\frac{4x+1}{3}-\sqrt{4x+1}\right)+c$
d) $\frac{1}{8}\left(\frac{(4x+1)^{5/2}}{5}-\sqrt[3]{4x+1}\right)+c$
e) $\frac{1}{8}\left(\frac{(4x+1)^{3/2}}{3}-\sqrt{4x+1}\right)+c$
f) $\frac{1}{3}\left(\frac{(4x+1)^{1/2}}{2}-(4x+1)\right)+c$